Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The growing number of AI-driven applications in mobile devices has led to solutions that integrate deep learning models with the available edge-cloud resources. Due to multiple benefits such as reduction in on-device energy consumption, improved latency, improved network usage, and certain privacy improvements, split learning, where deep learning models are split away from the mobile device and computed in a distributed manner, has become an extensively explored topic. Incorporating compression-aware methods (where learning adapts to compression level of the communicated data) has made split learning even more advantageous. This method could even offer a viable alternative to traditional methods, such as federated learning techniques. In this work, we develop an adaptive compression-aware split learning method (“deprune”) to improve and train deep learning models so that they are much more network-efficient, which would make them ideal to deploy in weaker devices with the help of edge-cloud resources. This method is also extended (“prune”) to very quickly train deep learning models through a transfer learning approach, which tradesoff little accuracy for much more network-efficient inference abilities. We show that the “deprune” method can reduce network usage by 4× when compared with a split-learning approach (that does not use our method) without loss of accuracy, while also improving accuracy over compression-aware split-learning by up to 4 percent. Lastly, we show that the “prune” method can reduce the training time for certain models by up to 6× without affecting the accuracy when compared against a compression-aware split-learning approach.more » « lessFree, publicly-accessible full text available November 30, 2025
-
Free, publicly-accessible full text available December 15, 2025
-
Future wireless networks need to support the increasing demands for high data rates and improved coverage. One promising solution is sectorization, where an infrastructure node (e.g., a base station) is equipped with multiple sectors employing directional communication. Although the concept of sectorization is not new, it is critical to fully understand the potential of sectorized networks, such as the rate gain achieved when multiple sectors can be simultaneously activated. In this paper, we focus on sectorized wireless networks, where sectorized infrastructure nodes with beam-steering capabilities form a multi-hop mesh network for data forwarding and routing. We present a sectorized node model and characterize the capacity region of these sectorized networks. We define the flow extension ratio and the corresponding sectorization gain, which quantitatively measure the performance gain introduced by node sectorization as a function of the network flow. Our objective is to find the optimal sectorization of each node that achieves the maximum flow extension ratio, and thus the sectorization gain. Towards this goal, we formulate the corresponding optimization problem and develop an efficient distributed algorithm that obtains the node sectorization under a given network flow with an approximation ratio of 2/3. Through extensive simulations, we evaluate the sectorization gain and the performance of the proposed algorithm in various network scenarios with varying network flows. The simulation results show that the approximate sectorization gain increases sublinearly as a function of the number of sectors per node.more » « less
An official website of the United States government

Full Text Available